
Kabir's Tech Dives
I'm always fascinated by new technology, especially AI. One of my biggest regrets is not taking AI electives during my undergraduate years. Now, with consumer-grade AI everywhere, I’m constantly discovering compelling use cases far beyond typical ChatGPT sessions.
As a tech founder for over 22 years, focused on niche markets, and the author of several books on web programming, Linux security, and performance, I’ve experienced the good, bad, and ugly of technology from Silicon Valley to Asia.
In this podcast, I share what excites me about the future of tech, from everyday automation to product and service development, helping to make life more efficient and productive.
Please give it a listen!
Kabir's Tech Dives
The Illusion of Thinking in Large Reasoning Models (LRM)
This episode investigates the reasoning capabilities of Large Reasoning Models (LRMs), a new generation of language models designed for complex problem-solving. The authors evaluate LRMs using controllable puzzle environments to systematically analyze how performance changes with problem complexity, unlike traditional benchmarks that often suffer from data contamination. Key findings reveal three performance regimes: standard LLMs surprisingly excel at low complexity, LRMs gain an advantage at medium complexity, and both models experience complete collapse at high complexity, often exhibiting a counter-intuitive decline in reasoning effort despite having a sufficient token budget. The analysis also examines the internal reasoning traces, uncovering patterns like "overthinking" on simpler tasks and highlighting limitations in LRMs' ability to follow explicit algorithms or maintain consistent reasoning across different puzzle types.
Podcast:
https://kabir.buzzsprout.com
YouTube:
https://www.youtube.com/@kabirtechdives
Please subscribe and share.